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Orbit depths of affine Kac-Moody algebras 

Richard H Capps 
Department of Physics, Purdue University, West Lafaydte, IN 47907, USA 

Abstract .  Since the number of weights in a highest weight representation of an 
affine algebra is infinite, it is particularly useful for these algebras to classify weight 
systems in terms of Weyl orbits. It is shown that even though depths in &e orbits 
are unbounded, any weight depth may be determined in a number of steps that is 
the same for all weights. The concepts of root layers and families and partner roots 
are introduced and used in the procedure. A projection of weight vectors onto a 
Euclidean subspace is used to present a simple geometrical picture of orbits. 

1. Introduction 

In this paper we are concerned with two typcs of irreducible representations (‘irreps’) 
of affine Kac-Moody algebras, highest weight irreps and the adjoint (root) represen- 
tation. It is useful to  group the weights of a highest weight irrep in Weyl orbits, where 
the weights of an orbit are obtainable from each other by sequences of Weyl reflec- 
tions. A useful concept for both finite and affine algebras is the depth of a weight in 
an orbit, defined as the minimum number of Weyl reflections associated with simple 
roots necessary t o  transform the weight into the dominant orbit weight. A measure 
of depth developed previously for finite algebras is shown to apply to  affine algebras 
as well 111. This measure is particularly useful for affine algebras, since the depths 
are unbounded while their determination requires a fixed number of steps that  is the 
same for all weights. 

In section 3,  the concepts of root layers and families and of partner roots are 
introduced. A family is infinite, and includes one root from each layer. The number of 
roots in a layer is finite, and may be obtained from a simple formula. These concepts 
are used in section 4 both in applying the depth determination procedure, and in 
proving its validity. 

2. Basic properties of affine algebras 

The basic properties summarised in this section can be found in various references 
[2-41. A simple affine algebra of rank ( n  - 1) is represented by an indecomposable 
Coxeter-Dynkin diagram with n vertices, numbered here from 1 to n. Each vertex 
represents a simple root Ri. The generalised, n x n Cartan matrix A is defined by the 
scalar product equation 
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The n Dynkin components of a weight M are denoted by mi and defined by 

mi = (MI Ri)(2/Ri).  ( 2 . 2 )  

One may specify a weight of a highest weight irrep completely by the n Dynkin 
components and one additional component m,. This component is defined by m, = 
-phi where the displacement ph for a weight M is the number of times the simple root 
R, is subtracted from the highest weight to obtain M .  For a root CY, P h  is the negative 
of the number of times R, is added to the zero root to obtain a. In [3] a particular 
simple root is chosen for R, for each algebra, but I use here the generalisation of [4], 
in which any of the n simple roots may be identified with R,. 

The determinant of A is zero for affine algebras. There is a null vector 6 that 
satisfies the equation SA = 0, where 6 is a row vector. Let 6 be written as a linear 
combination of simple roots, i.e. 

6 = E c i R i .  
i 

The vector b is normalised by the condition that the ci are as small as possible, 
consistent with all being positive integers. These ci are called marks. The co-root a; 
corresponding to the real non-zero root ai is defined by the equation 

The co-marks cy are defined by writing 6 as a linear combination of the simple CO-roots, 
i.e. 

6 = E c y R y  
i 

Thus, cy = ciR;/2. 
The ratios of the lengths of the simple root,s are given by the Coxeter-Dynkin 

diagram, or the Cartan matrix. The overall root normalisation is specified by the 
condition that the roots are as short as possible, consistent with the co-marks all 
being integers. With this convention the twist k of an algebra is given in terms of the 
length of the longest simple root RI by the formula IC = LR2. The Coxeter-Dynkin 
diagrams for all the simple affine algebras are given in various references [2-41. ? I  

The level L of a weight M is defined by the scalar product, 

L ( M )  = (MI 6 )  = E m i c y  
i 

The level of all roots is zero, and the level of all weights in an irrep is the same. A 
dominant weight is one such that mi 2 0 for all i .  The highest weight of a highest 
weight irrep is a dominant weight. 

The symmetric matrix S is defined in terms of the co-roots by Sij = (RY , Ry ). This 
matrix is related to the generalised Cartan matrix A by the equation S = 2(R2)-'A, 
where R2 is the diagonal, positive-definite matrix with elements (R2)i j  = bijR?. 

The finite subalgebra Sh (called here a basic subalgebra) is obtained by ignoring 
the simple root R, of the affine algebra, i.e., by ignoring the h vertex and connecting 
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lines in the diagram. The subweight with respect to S of an affine weight M is 
denoted by M(*) .  The (n - 1) Dynkin components of Mh) are obtained by ignoring 
the component mh of the affine weight. The matrix S(*) is an (n - 1)-dimensional 
square matrix obtained by ignoring the h row and column of S. The matrix S(*) does 
have an inverse, denoted by G(,). The ( n  - 1) dual components M y ( h )  of M(,) are 
given by the equation, 

j 

I define an n-component vector MV(h)*  by the equations 

M y ) *  = 0 My)* = M y )  for i # h .  (2.8) 
Once the special root R, is chosen two dual sets of (n + 1) components each may be 
defined. The extended Dynkin set is that discussed earlier, i.e., (mo = -Ph,ml...m,). 
The dual components are 

M: = L ( M ) / c h  ( 2 . 9 ~ )  

= -ph(cy/ch)  + Mi v (h)*  for i # 0. (2.9b) 
The generalised affine scalar product of two vectors may then be written 

n 
(2.10) 

i = O  

If one makes use of the level equation for M (equation (2.6)) the scalar product may 
be written in the form 

where ( M , Q ) ,  is the scalar product of the ( n  - 1)-component subweights M ( * )  and 
Q@). 

If L ( Q )  = 0,  it is seen from equation ( 2 . 9 ~ )  that Q: = 0. In this case the weight 
may be written as a linear combination of the co-roots, and the coefficients are the 
dual components QY(i # 0). Thus 

n 

Q = C Q y R y  (2.12) 
i = l  

The Weyl reflection W,(M) of a weight M associated with a non-zero root cr is 

(2.13) 
If cr is the simple root R j ,  the reflection is denoted by Wj and is called simple. It 
follows from equations (2.13) and (2.2) that the reflected weight is 

(2.14) 
The Weyl group consists of all sequences of zero or more Weyl reflections, and may 
be generated by the simple reflections alone. All weights related to a weight M by 
sequences of Weyl reflections comprise the Weyl orbit of M .  If L ( M )  > 0, the highest 
weight Mt+ of the orbit is dominant, and is the only dominant weight of the orbit. 

It is seen from equation (2.4) that the simple Weyl reflection Wj leads to a more 
negative weight, more positive weight, or the same weight if the Dynkin component 
mj is positive, negative, or zero, respectively. A positive simple reflection series is a 
series of simple Weyl reflections, each of which leads to a more positive weight. 

defined by 

W,(M)  = M - (M,a)(2/cr2)cr.  

Wj(M) = M - mjRj. 
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3. The adjoint representation 

One may construct the positive roots by adding simple roots, using the same algorithm 
known for finite algebras. However, in the case of affine algebras the number of roots 
is infinite. The weights m6 are all roots, for all integer values of m. If m is positive or 
negative these roots are called imaginary roots; all other roots are called real roots. 

A second method of obtaining the positive roots is to apply positive simple reflec- 
tion series to the simple roots. This method yields all the real positive roots, but not 
the imaginary roots. 

The root systems for all affine algebras are known to have the following properties 
(propositions 6.3d and 5.la of reference [3]): 

(i) If cy is a root, then cr + lk6 is a root (3.1) 

for all integers 1. Here k is the twist index, defined in section 2. (The possible values 
of k for the simple affine algebras are 1 ,  2 ,  and 3. )  

(ii) The multiplicities of all non-zero real roots are one. 

It follows from equations (2.9a) and (2.9b) that any weight of level zero may be 
specified completely by its n cc-root basis components Qy. 

The symbol A >- B for two weights on the same level means that the root-basis 
(or co-root basis) components of .I - B are non-negative, and at  least one is positive. 
Several further properties of the root systems follow from combining equation (3.1) 
with the definition of simple roots. First, each real root belongs to a specific layer. 
For the roots cy of the mth layer cy >- (m - 1)k6 and mk6 >- cr. A real root cy may be 
written in the form 

a = ali + ( m  - 1)k6. (3.2) 

where ali is a root of the first layer, and the layer number m ranges through all the 
integers. The positive real roots correspond to positive values of m. Clearly, classifying 
by layer is different from classifying by a displacement Ph. The term family is used 
here to describe the roots corresponding to one cyl i  and all values of m. For every real 
root cr there is a different ‘partner’ root, defined to be the root in the layer of cy and 
the family of (-cy). Thus, the partner of the root of equation (3.2) is mk6 - ali .  

An overlong root is defined to be a root with norm (length-squared) greater than 
2; these exist only for the twisted (k = 2 or 3) algebras. It is known that if the k 
in the recursion relation of equation (3.1) were replaced by 1, the relation would still 
apply to all roots except the overlong roots (proposition 6.3  of reference [3]). 

It can be shown that for all the simple affine algebras the number N ,  of real roots 
in a layer is given by the formula 

N ,  = kdC (3.3) 

where d is the rank ( d  = n - 1) and C is the Coxeter number, defined by 

n 

c = Cq (3.4) 
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4. The depth measure 

For finite algebras the depth of a weight M in an orbit has been defined as the minimum 
number of simple Weyl reflections necessary to transform M to the dominant orbit 
weight M++; this is the number of terms in any positive simple reflection series from 
M to M++. This definition is also appropriate for highest weight representations of 
affine algebras. Let S be a set of roots and M a weight of positive level. We denote 
by S [ M ]  the number of roots a in S that are obtusely inclined to M ,  i.e., satisfy the 
relation 

(M,cr)  < 0. (4.1) 

It has been shown for finite algebras that the depth is equal to I I [ M ] ,  where II is the set 
of all positive roots. This statement is true as well for highest weight representations 
of affine algebras. The proof will be given later. Here, we will assume the result, and 
show how the depth of any weight may be determined in a small number of steps. 

When calculating a scalar product of the type of equation (4.1), it is convenient to 
use the co-root components ay of the root a, determined from equation (2.12). Then, 
since the roots are of level zero, it is seen from equation ( 2 . 9 ~ ~ )  that the 0 component 
does not contribute in equation (2.10), i.e. 

n 

(M,cr)  = -&a;. 
i = l  

The scalar product depends only on the Dynkin components of M .  
We write the set II as a union of disjoint subsets 

II = C(Ti + T i )  

i 
(4.3) 

where ri is the set of positive roots in the family of al i ,  ali  and aii are partners, and 
the finite sum over i includes one of each pair of partner families. If the root a is 
written in the form of equation (3.2), it follows from equation (2.6) that 

where L is L ( M ) .  Consequently, one can determine 7ri[M] from the quantity X i  = 
- ( M ,  a l i ) .  If a is a real number and b is a positive number, the symbol ( u / b ) +  denotes 
the smallest non-negative integer n that satisfies n 2 ( a / b ) .  (Thus, n = 0 if U < 0.) 
It follows from equation (4.4) that 

T i [ M ]  = ( X i / k L ) +  .:[MI = ( X l / k L ) + .  (4.5) 

Xi = ( M ,  ai) - kL 

Since cyli + aii = k6, it follows that 

(4.6) 

so that the one scalar product ( M , a l i )  determines both r i [ M ]  and .:[MI. 
If the algebra is twisted (k > l), the procedure may be shortened further. First 

we consider the overlong roots, the roots such that a2 > 2. It can be shown that 
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the co-root-basis elements of these roots are integral multiples of k. Therefore, it is 
convenient to  define the reduced root afi = o l i / k ,  and to  let X i  = - ( M , C Y ; ~ ) .  With 
this redefinition, one uses equations (4.5) and (4.6) with the k factors replaced by 
unity. 

Next, we consider the roots that  are not overlong. These roots satisfy the recursion 
formula of equation (3.1) with k replaced by 1. Each layer consists of k mini-layers; 
for each root a of the first mini-layer, 6 + a.  Therefore, we may restrict the sum in 
equation (4.3) so that the aI i  are half the roots of the first mini-layer, and redefine 
aii t o  be a mini-partner, defined by ali + aii = 6. Then xi is redefined to be the set 
of k families related by multiples of 6, and the factors k in equations (4.5) and (4.6) 
should again be replaced by unity. 

Figure 1. Coxeter-Dynkin diagram for Of). 

I illustrate this procedure with a weight of the L = 3 algebra OF’. The Coxeter- 
Dynkin diagram for this algebra is given in figure 1.  If the roots in this diagram are 
numbered from left t o  right, the Cartan matrix is given by 

2 -1  

0 -3 
A =  ( - 1  2 -9) 

The marks are 1 , 2 ,  and 1 and the co-marks are { 123). (Curly brackets are used for 
co-root-basis components.) The level of a weight M is L ( M )  = ml + 2m, + 3m,. The 
norms of the simple roots are 2,  2, and 6 ,  respectively. There are six overlong roots in 
the first layer, {003}, {033}, {036}, and their respective partners {366}, {336}, and 
(333). We need consider only the first three; the corresponding reduced roots a‘ are 
{ O O l } ,  {Oll}, and (012). 

There are 18 normal (norm 2) roots in the first layer, 6 in each mini-layer. The  
roots of the first mini-layer are {loo}, { O l O } ,  {110}, and their mini-partners {023}, 
{113}, and (013). Again we need consider only the first three. 

Consider the weight M with Dynkin components (-5 -4 5). It is seen from 
equation (2.6) that  the level of the weight is 2. Choosing the three reduced overlong 
and the three normal roots discussed above for aii (ai i  = ali  for the normal roots), 
one makes a table, shown in table 1.  If X i  2 0, it is not necessary to  compute Xl. 
The depth of M is the sum of the numbers in the last column, i.e., 14. 

One usually wants to  know the dominant orbit weight M++ as well as the depth. 
For DT’ there are only two dominant level-2 weights, (200) and (010). Since the 
Dynkin components of M are not all divisible by 2, Mtt cannot be (200) and so must 
be (010). General methods for finding M++ are given in [4]. For any h the difference in 
displacement P h  between hf and M++ is given by the formula [4] Aph = (Ch/2L)ANh 
where N , ( M )  is ( M ,  M)h. In this case the displacement changes APi ( i  = 1 to 3) are 
15, 25, and 10. 

In some cases one can take advantage of simple bases. If the algebra is untwisted 
and the subalgebra s h  is fundamental (i.e., c,, = l ) ,  then a: = 0 for one of every pair 
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Table 1. Contributions to depth of weight ( -5  - 4 5 )  of DY). 

1857 

~~~~~ 

X ,  x: = -XI - 2 Contribution to depth 
4 1  

(001) -5  3 2 
(011) -1 -1 0 
(012) -6 4 2 
(100) 5 - 
(010) 4 - 
(012) 9 - 

3 
2 
5 

of partner roots in the first layer. The set of these roots is the set of positive roots 
of 8,. One may use these roots to compute the depth; the scalar product (M,crli) 
is then ( h f , a l i ) h .  (This follows from equation (2.11), since Ph for these roots is 0.) 
In some cases simple orthogonal bases exist for 8,; such bases are listed by King and 
Al-Qubanchi (reference [6], table 2). 

Now I will show that the depth criterion involving equation (4.1) is valid for affine 
algebras as well as finite algebras. First, we review the proof for finite algebras [l]. 
We consider an arbitrary non-dominant weight M ,  and a simple Weyl reflection Wj 
associated with a negative Dynkin component mj. Since the theorem is valid when 
n[M] = 0, it is sufficient to show that I I (Wj (M)]  = I I[M] - 1. It follows from 
equation (2.2) that ( M ,  Rj) < 0. Since the j t h  Dynkin component of Rj is equal 
to 2, it follows from equation (2.14) that W j ( M ) j  = -mj ,  so ( W j ( M ) ,  R j )  > 0. 
The finite set nj is defined to be the set of all positive roots except Rj. Since the 
Rj scalar product produces the desired decrease in I I[M] (as one proceeds from M 
to Wj(M)), it is sufficient if l l j [ M ]  = llj[Wj(M)]. However, for a Weyl reflection, 
( W j ( M ) ,  a) = ( M ,  Wj(a)). Therefore, it is sufficient to show that 

I I j [ M ]  = wj(nj)[M]. (4.7) 

A lemma given by Jacobson states that if Q is any positive root other than R j ,  Wj(a) 
is also a positive root [7]. Hence Wj(IIj) is a set of different positive roots and does 
not contain Rj. Therefore Wj(IIj) 2 IIj, and equation(4.7) is satisfied. 

We next consider one of the proofs of Jacobson's lemma, one that is convenient 
for showing that the lemma applies to affine algebras. The roots a and Wj(a) are 
opposite members of an Rj root chain; that is, if P and y are the more positive and 
more negative of Q and Wj (a), respectively, the weights y, y + Rj, y + 2Rj , . . . p are 
all roots. If y is negative and P positive, the root chain must contain a zero root; 
otherwise the chain would contain two successive roots y1 and yz such that y1 is 
negative, yz is positive and yz = yl + R j .  This is impossible because the simple root 
Rj cannot be the sum of the two positive roots y2 and -yl. The only Rj root chain 
that contains a zero root is -Rj, 0, Rj. This follows because if Q is a real root of an 
affine algebra (or of a finite algebra), 20 is not a root (proposition 5.1 of reference [3]). 
Therefore, the lemma is valid for affine algebras. 

We next combine the lemma with the recursion property of equation (3.1). Since, 
for any integer n, the Dynkin components of cy + nb6 are the same as those of a, it 
follows from equation (2.14) that if Wj(a) = p, then Wj(a + nk6)  = P + nb6. We 
consider the positive roots of the mth layer. The simple reflection Wj takes the root 
( m  - l)k6 + Rj to (m - 1)M - Rj; the layer number is decreased by one. In a similar 
fashion Wj takes the partner root mk6- Rj to mk6+ R j ;  the layer number is increased 
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by one. For all real roots a of the mth layer except these two, W j ( a )  is also in the 
mth layer. 

In order to  extend the finite-algebra proof to affine algebras, we need to find an 
appropriate finite root set nj. It is clear from equation (4.4) that for any weight M 
there is a layer number q such that no root of layer higher than the q layer can satisfy 
equation (4.1). We start by considering all the positive roots of the layers 1 through 
q. As before, we exclude the root Rj from this set. We then add to the set one root 
of the ( q  + 1) layer, the root qk6 + Rj. The resulting set is n j .  As before, the set 
Wj (U,) is identical to the set IIj, so the proof is valid. 

5. A geometric picture 

The signature of a positive root for a weight M is defined as negative if the inequality 
of equation (4.1) is satisfied; otherwise the signature is positive. Each weight may be 
classified by listing the roots with negative signatures. The number of roots in the 
list is the depth. In [l] several properties of this classification scheme were discussed. 
One can picture the weights geometrically for finite algebras, because the space is 
Euclidean. 

In the case of affine algebras, the standard scalar product involves a weight space 
that is not Euclidean. In order to picture the effects of Weyl reflections, we will 
consider a particular projection of positive-level weights onto a space that is Euclidean. 

If A is an affine algebra with n vertices, a Euclidean space of ( n  - 1) dimensions is 
defined by the simple roots corresponding to any of the basic subalgebras S h .  For an 
affine weight M the vector in this space is defined by the Dynkin components other 
than mk.  If the affine vector is of level zero, the resulting ( n  - 1)-component vector 
is the same no matter which of the n basic subalgebras is chosen [4]. Therefore, it is 
convenient to  use all n Dynkin components to describe such a vector. 

Given a weight M of positive level, I define a level-0 projection M p  by the equation 

M p = M - D  (5.1) 

where the n Dynkin components di of D are 

2L 
R: C 

di = - 

and C is the Coxeter number, equation (3.4). It is easy .to see that the level of D is 
L so that the level of Mp is zero. The Dynkin components of Mp are not integers, in 
general. Since the levels of all weights in an orbit are the same, the Weyl reflection of 
a projected weight may be defined by 

W,(Mp) = W,(M) - D. (5.3) 

It follows from equations (5.1), (5.3), and the Weyl reflection equation, equation 
(2.13), that W,(M ) -  Mp is a vector in the direction of a in the projection space. The 
component in the chrection of a of any vector V is given by (VI a)/IaI. I denote the av- 
erage of the a components of Mp and W,(Mp)  by Fp, i.e., Fp = [Mp+W,(Mp)]/(21al). 
It follows from equations (5.1), (5.3) and (2.13) that 

Fp = -(O,.)/I.I. (5.4) 
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Since this quantity is the same for all weights in an orbit, the transformation W, does 
act like a reflection in the projection space. The reflection surface is of dimension 
( n  - 2), is perpendicular to CI and is displaced from the origin by the Fp of equation 
(5.4). A positive value of (M,,CI) means that the projected weight Mp and the origin 
are on the same side of the reflection surface. 

Let the root CI be of the form cy = Ri + 16, where Ri is a simple root and 1 is an 
integer. It follows from equations (2.2), (2.6), (5.2) and (5.4) that 

- - - (A++ L 
F P -  lRil C (5.5) 

The simple roots correspond to 1 = 0 in equation (5.5). The finite volume enclosed by 
the n surfaces of the simple roots is the dominant chamber and includes the origin in 
the projection space. Each Weyl chamber is the same size and shape. 

It is instructive to compare this picture with the corresponding picture for a finite 
algebra of rank n. In the finite case, the Weyl surfaces are planar, of dimension (n-  l),  
and pass through the origin. However, all weights in an orbit have the same length L, 
so we consider a sphere centred at  the origin, of radius t. I use the word chambers 
here to  refer to  segments of this sphere bounded by intersections of the Weyl surfaces 
with the sphere. These intersections are of dimension ( n  - 2). 

The projection-space chambers for affine algebras also represent the intersections 
of the Weyl sectors with a surface appropriate for a certain class of weights, weights of 
a particular level. The surface for affine weights is flat rather than spherical, so there 
are an infinite number of chambers. 

A simple example is the algebra affine A, ,  where the three simple roots lie in a 
plane, each of length 4 and at  angles of 120' to the other two. The projection space 
is two dimensional and the chambers are equilateral triangles of altitude L / a .  

In this projection space generalisations of the theorems of reference [l] are valid. 
The allowed signature lists for the weights of an orbit are the same for all orbits of a 
given pattern, where a pattern is specified by identifying the Dynkin components of 
the dominant weight that are zero. In every orbit, there is exactly one weight either 
in or on a boundary of every chamber. If the weights are not on any boundaries, the 
orbit is maximal; in this case m t t  > 0 for all i. 

For each Weyl chamber V there is a unique member of the Weyl group that 
transforms V into the dominant chamber Vtt; the chamber may be identified with 
this transformation. If two chambers differ in the signature of only one positive root, 
they intersect in an ( n  - 2)-dimensional boundary and are called adjacent. If V 
corresponds to the Weyl transformation W ,  the chamber that corresponds to W-' is 
called V- ' .  As in the finite case, two chambers U and V are related by one simple 
Weyl reflection if and only if the inverse chambers U-' and V-' are adjacent. The 
other theorems of [l], concerning the signature condition and the orbit rule, are also 
valid for the affine caset 

In conclusion, even though there are an infinite number of members of the Weyl 
group for an affine algebra, the depth of every weight in a highest weight irrep is 
finite, and this allows one to extend the theorems and proofs from the finite to affine 
algebras. 

t If one uses or proves the signature condition of [I] in the affine case, one must consider the positive 
real and imaginary roots, with the signatures of the imaginary roots assigned to be positive. 



1860 R H Capps 

Acknowledgment 

This work was supported in part by the US Department of Energy. 

References 

[l] 
[2] 
[3] 

[4] 

[5] 
[SI 
[7] 

Capps R H 1988 J. Math. Phys. 29 1732 
Slansky R 1988 Commun. Nucl. Part. P h y a .  A 18 175 
Kac V G 1985 Infinitesimal Dimensional Lie Algebra8 2nd edn (Cambridge: Cambridge Uni- 

Capps R H 1989 Representations of Affine Kac-Moody Algebras and the Affine Scalar Product 

Moody R V and Patera J 1984 SIAM J. Alg. Diac. Method8 5 359 
King R C and Al-Qubanchi A H A 1981 J. Phyr.  A: MatR. Gen. 14 15 
Jacobson N 1962 Lie Algebras (New York: Wiley-Interscience) p 241 

versity Press) 

Preprint Purdue University, West Lafayette, IN 


